

# Detailed Simulations of Laboratory-Scale Premixed Turbulent Combustion

### Marc Day

MSDay@lbl.gov Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory, USA

http://seesar.lbl.gov/ccse/

SC 2003 Phoenix, AZ November 15-21, 2003

My work sponsored by the US Dept. of Energy SciDAC: Scientific Discovery through Advanced Computation

NOTE: Click images containing QT filmstrip icon to play a QuickTime movie

### **CCSE** Research



Mission CCSE is an applied mathematics group that focuses on large-scale parallel simulation of complex fluid flows.

Expertise Mathematical analysis of multiphysics applications where advection is a key component, and design of appropriate high-resolution computational algorithms.

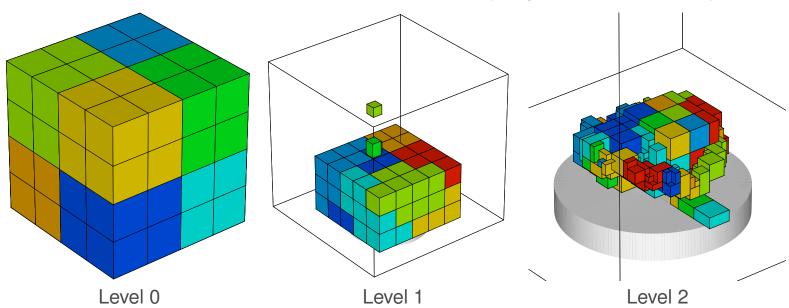
#### **Applications**

- Chemically reacting low- and high-speed flows
- Nuclear deflagrations
- Interface dynamics and turbulent mixing
- Explosion dynamics

Framework Conservative finite-differences coupled to dynamically adapting meshes.

## **Block-Structured AMR**




Each level is a union of rectangular patches

#### Each grid patch:

- Logically structured, rectangular
- Refined in space and time by evenly dividing coarse grid cells
- Dynamically created/destroyed to track time-dependent features
- In parallel, grids distributed based on work estimate



Block-structured hierarchical grids (Berger and Colella, 1989)



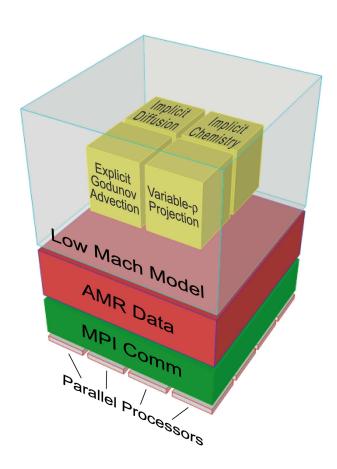
## **CCSE AMR Extensions**



#### AMR - 14 years later...

- Parallel grid distribution, intra- and inter-level communication
- Variable property parabolic and elliptic AMR solvers
- Elliptically constrained flows, projection algorithms
- Time-split, sequential integration algorithms for complex applications
- AMAR (algorithm refinement) resolution-dependent models

#### Example multiphysics applications:


- 1. Shock-induced mixing and combustion
- 2. Coupling Navier-Stokes to DSMC at the finest level
- 3. Variable-density shear layers, IAMR
- 4. Low Mach number laminar diffusion flames
- 5. Flame propagations in Type la supernovae
- 6. Nitric Oxide emissions in steady diffusion flames
- 7. Turbulent lean premixed methane combustion

# **Simulation Approach**



For low detailed simulation of laboratory-scale burners:

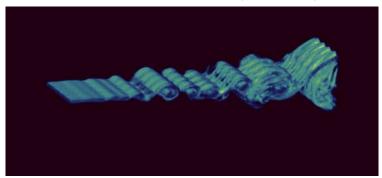
- Low Mach number formulation
  - Eliminates acoustics, retains heating compressibility effects
  - Conserves species and enthalpy
- Adaptive mesh refinement
  - Localizes mesh where needed
  - Algorithm complexity
- Parallel architectures
  - Distributed memory
  - Dynamic load balancing
  - Heterogeneous work load



## **AMR Extensions - IAMR**

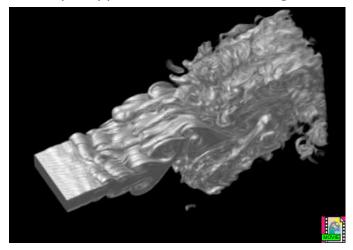


Projection methods are a family of efficient algorithms for integrating systems satisfying the incompressibility constraint,  $\nabla \cdot U = 0$ .


Projection methods are based on a 2-stage process:

- 1. Construct time-explicit update of U ignoring the  $\nabla \cdot U = 0$  constraint
- 2. Extract the component of this update failing to satisfy the constraint

IAMR: Robust, conservative, adaptive-grid variable- $\rho$  projection scheme


- Godunov advection
- Variable-coefficient Poisson solve
- Semi-implicit diffusion

Validation: Variable density shear layer



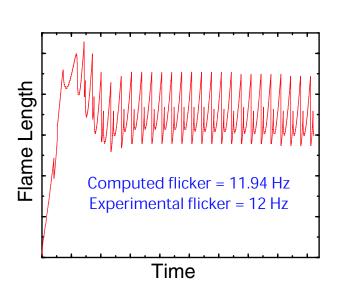
Brown and Roshko experiments (1974)

#### Example application of the IAMR algorithm



Evolution of an inert turbulent jet

## **AMR Extensions - Laminar Flames**



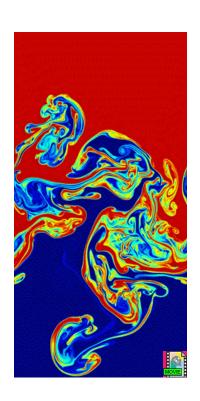

In many laboratory flames  $U \ll C_s$ . A *low Mach* model filters away acoustic waves, but leads to a elliptic constraint,  $\nabla \cdot U = S$ . Large time steps are traded for global coupling (linear solves) and algorithm complexity.

The IAMR adaptive projection algorithm extends naturally to low Mach number models for reacting flow.

Example: Flickering methane flame (buoyancy-driven K-H)

- Simple diffusion model
- Reduced chemistry
- Axisymmetric domain
- Grid refined T > 1800 K



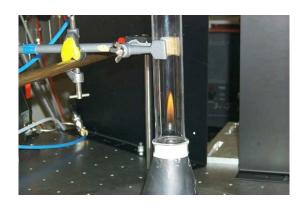

# AMR Extensions - Type Ia Supernovae

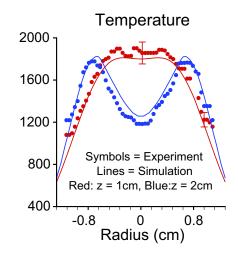


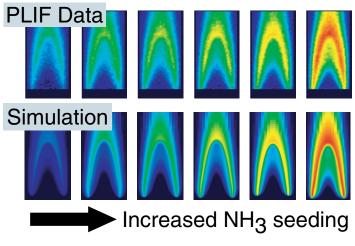
Type Ia SNae: Detonation or constant-p deflagrations?

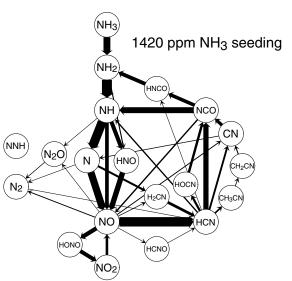
Can fluid dynamical instabilities increase effective burn rate?

A low Mach number simulation built by extending the laminar flame model.





- Extensions: Degenerate EOS, nonlinear electron conduction, stiff nuclear chemistry,  $^{12}\text{C} \rightarrow ^{24}\text{Mg}$
- Here,  $M \sim S_L/C_s \sim 10^{-3}$ . Huge savings over DNS.
- Initial validation against FLASH (community standard)
- Long-time 2D integrations beyond FLASH capability
- Currently exploring first-ever 3D simulations


## **AMR Extensions - Detailed Flames**




With the addition of detailed chemistry and transport, the fine-scaled structure of flame simulations can augment experimental diagnostics.









### **Lean Premixed Burners**



#### LBNL Combustion Laboratories (R. Cheng)



Rod-stabilized V-flame



4-jet Low-swirl burner (LSB)



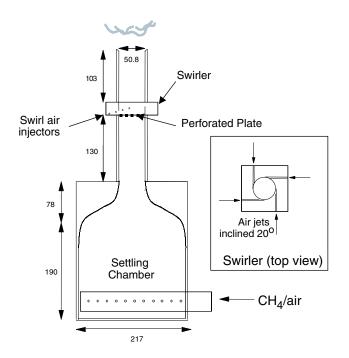
Industrial LSB nozzle

Support Dept. of Energy, Office of Power Technologies

Mission Develop low cost and robust methods for lean premixed combustion (LPC) to reduce  $NO_x$  in industrial burners

Technology Aerodynamically stabilized LPC burners. Patented vane swirler demonstrated at industrial high-power conditions

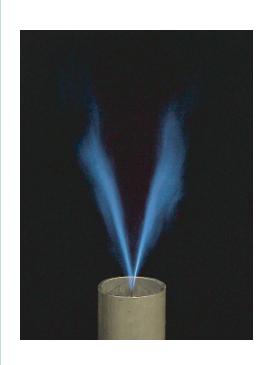
Collaboration Understand interaction of nozzle aerodynamics with flame propagation, turbulence and emission chemistry


# **Burner Configuration**



- Same experimental device for LSB and V-flame
- Focus here on V-flames, no airflow through swirler jets
- Turbulence plate in nozzle has 3 mm holes on 4.8 mm centers




Burner assembly



Experiment schematic

### **Relevant Scales**





#### Domain

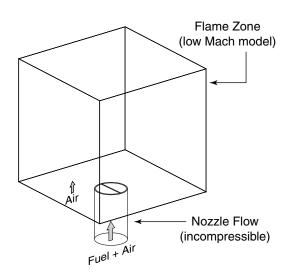
- Fuel pipe  $\sim$  5 cm
- lacktriangle Flame length  $\sim$  20 cm
- Fueling rate  $\sim$  3 m/s
- Sound speed  $\sim$  350 m/s
- **Exchange time**  $\sim$  70 ms

#### Flame

- Thermal width  $\sim$  600  $\mu$ m
- Reaction zone  $\sim$  150  $\mu$ m
- lacktriangle C,H,O chemistry  $\sim$  10-1000 ns
- N chemistry  $\sim$  .01 s
- Number species  $\sim$  20-80
- Number reactions  $\sim$  80-500

#### Turbulence

- Intensity  $\sim$  10-50 cm/s
- lacktriangle Viscous length  $\sim$  250  $\mu$ m
- Coherent eddies ~ 3-5 mm
- lacktriangle Eddy turnover  $\sim$  1 ms


Direct numerical simulation with reacting Navier-Stokes model


$$\mathcal{O}(10^2) \text{species} \times \mathcal{O}(10^{12}) \text{cells} \times \mathcal{O}(10^8) \text{steps}$$

# 2-Part Simulation Strategy





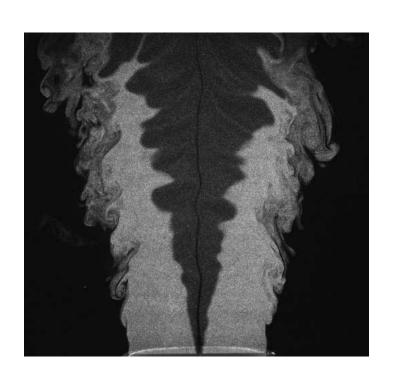




1. Inert turbulent nozzle flow, IAMR

Inflow Uniform inflow through perforated plate ("jet" array)

Result After residence time  $\sim L/U \sim$  0.3s, breakup/mixing of inflow jets to nearly isotropic turbulence with thin boundary layers inside nozzle wall


2. Low Mach number reacting flow

Inflow Data from step 1, but for small no-flow on rod surface

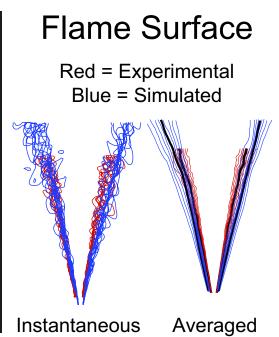
Result Established flame at rod extends downstream and through outflow boundary

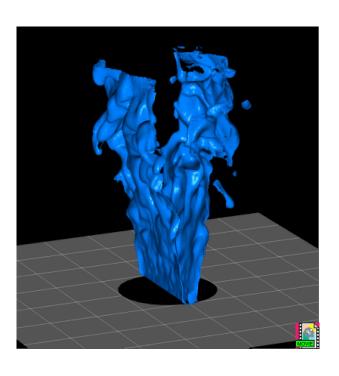
# Results: Computation vs. Experiment





Experimental PIV image





CH<sub>4</sub> from simulation (animation of density gradient field)

## **Instantaneous Flame Surface**









Flame "location" depends on source of data:

Experiment: Find large  $\nabla s, s = PIV$  particle density

(indicates volumetric expansion)

Simulation: Find appropriate isosurface of  $\|\nabla \rho\|$ 

## **V-Flame Simulation Stats**



For the  $\phi = 0.8$  run shown:

- 20 chemical species, 84 fundamental reactions
- 0.132 sec total simulated time, 1400 coarse-grid time steps
- Data generation: 3(4) AMR refinement levels, factor-of-2
  - Restart: 13 (60) GB/step, saved every 5th
  - Data analysis (38 quantities): 3.8 (16.8) GB/step, saved every 5th
  - Total (including refinement study): 6 TB
- AMR stats

| Level | # grids | # cells | % Domain |
|-------|---------|---------|----------|
| 0     | 27      | 885K    | 100      |
| 1     | 173     | 3.4M    | 48       |
| 2     | 870     | 9.2M    | 16       |
| 3     | 3700    | 46M     | 10       |

Run on seaborg.nersc.gov, 256 CPUs, 2 steps/hr

## **Final Comments**



#### Relationship to other work

- In the 2002 Proc. Combust. Symp, only 4 groups worldwide reported 3D detailed simulations of this sort
- All 3 other groups:
  - 1. Had access to vector-parallel computing hardware
  - 2. Used "traditional" (compressible DNS) methods
  - 3. Considered only hydrogen flames
- In 2003, CCSE is the only group capable of fully detailed simulations of laboratory-scale methane flames. Groups employing traditional simulation techniques are severely limited, even on vector-parallel supercomputers.

#### **Future Work**

- Continued validation work with experimentalists
- More detailed investigation of turbulent/flame interactions